Chapter 3. Component Design, R&D Strategy & Results, Construction Status

3.1 Linac
3.1.1 Ion Source

3.1.2. Accelerating Structure and Beam Transport
3.1.2.1 LEBT
3.1.2.2 RFQ
3.1.2.3 MEBT1
3.1.2.3.1 Buncher
3.1.2.3.2 Chopper
3.1.2.3.3 Scraper
3.1.2.3.4 Beam monitors
3.1.2.3.5 Magnets for the MEBT1
3.1.2.3.6 Alignment
3.1.2.3.7 Beam test
3.1.2.4 DTL, SDTL
3.1.2.4.1 Rf and mechanical features of the DTL and SDTL tanks
3.1.2.4.2 RF contactor
3.1.2.4.3 Vacuum and rf properties of the test tank
3.1.2.4.4 Quadrupole magnet for the DTL
3.1.2.4.5 The specification of all the Q-magnets
3.1.2.4.6 Quadrupole doublets for the SDTL
3.1.2.4.7 Pulsed-current power supply
3.1.2.4.8 Breakdown test of the copper electrode
3.1.2.4.9 Input-coupler for the DTL and SDTL
3.1.2.4.10 High-power test of a model tank and SDTL
3.1.2.4.11 Assembling of DTs for the first tank of the DTL
3.1.2.4.12 Field stability in the DTL tank during operation
3.1.2.5 ACS
3.1.2.5.1 Cavity Fabrication
3.1.2.5.2 Cavity Design
3.1.2.6 Superconducting Linac
3.1.2.6.1 General
3.1.2.6.2 Lorentz Detuning and RF Control for Pulsed Operation
3.1.2.6.3 Cavity Design
3.1.2.6.4 Input Coupler
3.1.2.6.5 Cavity Fabrication
3.1.2.6.6 Cryomodule
3.1.2.6.7 Cryogenics
3.1.2.7 BT to RCS
3.1 2.8 Alignment
3.1 3 RF Power Source
3.1.3.1 Overview
3.1.3.2 324-MHz Klystron
3.1.3.3 972-MHz Klystron
3.1.3.4 Klystron Power Supply
3.1.3.5 Waveguides
3.1.3.5.1 Waveguide layout
3.1.3.5.2 Components of the waveguide system
3.1.3.6 RF Drive and Control System
3.1.3.6.1 RF Reference Distribution System
3.1.3.6.2 Digital Rf feedback system
3.1.3.6.3 Test of feedback system
3.1.3.7 Chopper Driving System
3.1.4 Vacuum System
3.1.4.1 Ion Source and LEBT, RFQ, MEBT
3.1.4.2 DTL, SDTL, Periodic-Reverse Electrolytic Copper Plating
3.1.4.3 ACS
3.1.5 Beam Instrumentation
3.1.5.1 Beam Instrumentation Layout around the LINAC
3.1.5.2 Beam Position Monitor(BPM)
3.1.5.3 Beam Current Monitor
3.1.5.4 Beam Phase Monitor
3.1.5.5 Beam Profile Monitor
3.1.5.6 Beam Loss Monitor
3.1.5.7 The monitors under designing
3.1.5.8 Conclusion
3.2 RCS
3.2.1 Magnets and Power Supplies
3.2.1.1 Design of RCS Magnets
3.2.1.2 Resonant Network System
3.2.1.3 Eddy Current Effect
3.2.2 Injection, Beam Collimation, Extraction
3.2.2.1 Research and Development of Long-Lived Thick Carbon Stripper Foils
3.2.2.2 Kickers
3.2.2.2.1 Design Concept
3.2.2.2.2 Magnet
3.2.2.2.3 Power Supply
3.2.2.2.4 Transverse Emittance Increment
3.2.2.2.5 Possibility of Up-grade
3.2.2.3 Septum Magnets
3.2.2.4 Bump Magnets
3.2.2.4.1 Introduction
3.2.2.4.2 Closed orbit bump magnets
3.2.2.4.3 Painting bump magnets
3.2.2.4.4 Septum magnets
3.2.2.5 Collimator Hardware Design
3.2.2.5.1 Radiation Shield Design of Collimator
3.2.2.5.2 3GeV RCS Beam Collimator Design
3.2.2.6 H0 Beam Dump System
3.2.2.6.1 Overview
3.2.2.6.2 Heating Design
3.2.3 Vacuum System
3.2.3.1 Vacuum chamber
3.2.3.2 Alumina ceramic duct
3.2.3.3 RF shield and TiN coating
3.2.3.4 Vacuum pumps and components
3.2.4 Beam Instrumentation
3.2.4.1 Introduction
3.2.4.2 Current Monitor
3.2.4.2.1 Intensity Monitor
3.2.4.2.2 Bunch Monitor
3.2.4.3 Beam Loss Monitor
3.2.4.3.1 Ionization type
3.2.4.3.2 Color scintillator type
3.2.4.4 Beam Position Monitor
3.2.4.4.1 Pickup Electrode
3.2.4.4.2 Signal Processing
3.2.4.4.2.1 Heterodyne Processing
3.2.4.4.2.2 Log-Amp method
3.2.4.4.2.3 Digital Processing
3.2.4.5 Beam Profile Monitor
3.2.4.5.1 Distractive Beam Profile Monitor
3.2.4.5.2 Non-distractive Beam Profile Monitor
3.2.4.6 Tune Monitor
3.2.5 Beam Transport Components to Neutron and Muon Production Targets
3.2.5.1 Magnets
3.2.5.2 Beam Monitors
3.2.5.3 Vacuum Components
3.2.5.4 Beam Collimators
3.2.5.5 Beam Dump
3.2.5.6 Beam Line inside the Material and Life Science Facility
3.2.6 Beam Transport Components to 50-GeV Synchrotron
3.2.6.1 General
3.2.6.2 Magnets and Power Supply
3.2.6.3 Vacuum System
3.2.6.4 Monitor System
3.2.6.5 Beam Scraper
3.3 50GeV MR
3.3.1 Magnets and Power Supplies
3.3.1.1 Magnets
3.3.1.2 Power Supplies
3.3.2 Injection, Extraction, Beam Collimation, Beam Abort, Beam Dump
3.3.2.1 Kicker
3.3.2.2 Septum
3.3.2.2.1 Types of Septum Magnet
3.3.2.2.2 Slow Extraction Septum Magnet
3.3.2.2.3 Fast extraction septum magnet
3.3.2.2.4 Electrostatic Septum
3.3.2.3 Beam halo scraper
3.3.2.4 Beam Abort and Dump
3.3.3 Vacuum System
3.3.3.1 Standard vacuum chamber
3.3.3.2 Vacuum chamber in dipole and quadrupole magnets
3.3.3.3 Bellows
3.3.3.4 Surface treatment of vacuum chambers
3.3.4 Beam Instrumentation
3.3.4.1 Introduction
3.3.4.2 Current Monitor
3.3.4.3 Beam Loss Monitor
3.3.4.4 Beam Position Monitor (BPM)
3.3.4.5 Beam Profile Monitor
3.3.4.6 Summary
3.4 RF Acceleration System
3.4.1 Synchrotron Cavities
3.4.1.1 Magnetic Alloy
3.4.1.2 Cut Core
3.4.1.3 Cooling
3.4.1.4 The MR Cavity
3.4.1.5 The RCS Cavity
3.4.2 RF Power Amplifier

3.4.3 Anode Power Supply
3.4.3.1 Radio-frequency Signal Generator
3.4.4 Radio-frequency Signal Generator

3.4.5 Beam Control
3.4.5.1 Orbit Control
3.4.5.2 Phase Control
3.4.5.3 RF Feed-forward System
3.5 Synchronization